See reader questions & answers on this topic! - Help others by sharing your knowledge
Copyright 1997, 1998, 1999, 2000, 2001, 2002 by Warren S. Sarle, Cary, NC, USA. Answers provided by other authors as cited below are copyrighted by those authors, who by submitting the answers for the FAQ give permission for the answer to be reproduced as part of the FAQ in any of the ways specified in part 1 of the FAQ. This is part 3 (of 7) of a monthly posting to the Usenet newsgroup comp.ai.neural-nets. See the part 1 of this posting for full information what it is all about. ========== Questions ========== ******************************** Part 1: Introduction Part 2: Learning Part 3: Generalization How is generalization possible? How does noise affect generalization? What is overfitting and how can I avoid it? What is jitter? (Training with noise) What is early stopping? What is weight decay? What is Bayesian learning? How to combine networks? How many hidden layers should I use? How many hidden units should I use? How can generalization error be estimated? What are cross-validation and bootstrapping? How to compute prediction and confidence intervals (error bars)? Part 4: Books, data, etc. Part 5: Free software Part 6: Commercial software Part 7: Hardware and miscellaneous User Contributions:Comment about this article, ask questions, or add new information about this topic:Section Contents
Part1 - Part2 - Part3 - Part4 - Part5 - Part6 - Part7 - Single Page [ Usenet FAQs | Web FAQs | Documents | RFC Index ] Send corrections/additions to the FAQ Maintainer: saswss@unx.sas.com (Warren Sarle)
Last Update March 27 2014 @ 02:11 PM
|
PDP++ is a neural-network simulation system written in C++, developed as an advanced version of the original PDP software from McClelland and Rumelhart's "Explorations in Parallel Distributed Processing Handbook" (1987). The software is designed for both novice users and researchers, providing flexibility and power in cognitive neuroscience studies. Featured in Randall C. O'Reilly and Yuko Munakata's "Computational Explorations in Cognitive Neuroscience" (2000), PDP++ supports a wide range of algorithms. These include feedforward and recurrent error backpropagation, with continuous and real-time models such as Almeida-Pineda. It also incorporates constraint satisfaction algorithms like Boltzmann Machines, Hopfield networks, and mean-field networks, as well as self-organizing learning algorithms, including Self-organizing Maps (SOM) and Hebbian learning. Additionally, it supports mixtures-of-experts models and the Leabra algorithm, which combines error-driven and Hebbian learning with k-Winners-Take-All inhibitory competition. PDP++ is a comprehensive tool for exploring neural network models in cognitive neuroscience.